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The formation of vortex streets in the wake of two-dimensional bluff bodies can 
be explained by considering the non-linear interaction of two infinite vortex 
sheets) initially a fixed distance, h, apart, in an inviscid incompressible fluid. The 
interaction of such sheets (represented in the calculation by rows of point-vortices) 
is examined in detail for various ratios of h to the wavelength) a, of the initial 
disturbance. The number and strength of the concentrated regions of vorticity 
formed in the interaction depend very strongly on h/a. The non-linear interaction 
of the two vortex sheets explains both the cancellation of vorticity and vortex- 
street broadening observed in the wakes of bluff bodies. 

1. Introduction 
Interest in the wakes in flow past bluff bodies has been evidenced since the 

early experiments of Strouhal in 1878 concerning ‘aeolian tones ) emanating from 
a wire moving through air; however, it was not until von Karman (191 1) published 
his first paper on the theory of vortex streets that a widespread continuing 
research interest in vortex-street phenomena began. Goldstein (1938) has sum- 
marized most of the early research in this field. Theoretical studies were primarily 
concerned with elaborations of the stability analysis of alternate rows of point 
vortices, while experimental investigations were chiefly concerned with the 
frequency of the velocity fluctuations in the wake due to vortex streets. 

Many of the important features of the flow near a bluff body and of the vortex 
street itself were elucidated by Fage & Johansen (1927, 1928). At Reynolds 
numbers large enough for a vortex street to develop in the wake of a bluff body, 
they found that the boundary layers separated from the upper and lower surface 
of the body and were convected downstream in the wake. These free vortex layers 
separated the outer flow (which was essentially potential flow) from the region of 
very low velocity which existed immediately behind the bluff body. Since the 
boundary layers separated at  points on the body where the time-average speed 
in the external flow was V,, considerably greater than the speed of the undis- 
turbed stream) the rate at which vorticity was discharged from the body into 
each vortex layer was found experimentally to be &U:. 

With regard to the vortex street itself, Fage & Johansen (1927) reported that 
the ratio of the width of the street to the distance between adjacent vortices in the 
same row increased with the downstream distance behind the body. Near the 
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body the ratio was very nearly that predicted by Karman (191 l), while far down- 
stream the ratio had increased by about a factor of two. At the same time, using 
hot-wire anemometer techniques they attempted to measure the rate a t  which 
vorticity of a given sign was convected downstream in the form of large individual 
eddies in the vortex street. This quantity cannot be measured directly, and any 
estimation of the value involves assumptions about the distribution of vorticity 
within eddies as well as about the street geometry. Nevertheless their estimation 
that only 60 % of the vorticity discharged from the edges of a normal flat plate 
ended up in the large individual eddies appears reasonable. In  spite of these and 
other important investigations the mechanism of the formation of the vortex 
street, downstream in the wake of a bluff body, from the free vortex layers 
discharged from the body has never been explained. 

One might expect that photographic studies would explain the mechanism of 
the formation of the vortex street; however, this does not appear to be the case. 
Homann (1936) obtained excellent photographs of oil slicks on the free surface of 
water which show a vortex street forming behind a cylinder. The widening of the 
street with the distance downstream of the cylinder is clearly shown; still the 
mechanism of the street formation is obscure. More recently Lippisch (1958) has 
published a high-speed photograph of smoke trails showing strong interaction 
between the free vortex layers behind a cylinder; however, this too leaves most 
questions about the mechanism of the formation of vortex streets unanswered. 
The purpose of this paper is to explain the essential features of this mechanism of 
formation using a relatively simple flow model. It will be shown that the model 
accounts for wake widening and for cancellation of vorticity in the transition from 
free vortex layers to vortex streets. 

2. The flow model 
Ideally one would like to analyse mathematically the time history of perturba- 

tions in the steady flow of a viscous incompressible fluid past a two-dimensional 
bluff body; however, the steady solution has yet to be found. Since it is the 
unsteady problem which is of interest here, major simplifications of the flow 
model are needed. 

Let us consider first the importance of viscosity in the formation of the vortex 
street. Viscosity is important for the formation of the vortex layers emanating 
from the bluff body; however, it is not clear that viscosity is essential to the 
formation of the vortex street provided the free vortex layers exist initially. 
Kovasznay (1949) and Roshko ( 1 9 5 4 ~ )  have both observed that below a Reynolds 
number of 40 there is no vortex street formed in the wake of a circular cylinder; 
while in the Reynolds number range from 40 to 140 the vortex street is regular 
and stable. In  the latter range of Reynolds number the Strouhal number 
(dimensionless frequency formed with the free stream velocity and the cylinder 
diameter) of the vortex street varies from 0.12 a t  the lower limit to about 0.185 
at the upper limit. In  the range of the Reynolds number from about 300 to about 
100,000 the velocity fluctuations in the wake of a cylinder due to the vortex street 
are not regular, although a predominant frequency can be determined. The 
Strouhal number in this Reynolds number range is almost constant, varying from 
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about 0.20 at both ends of the range to 0.21 in between. This is the same Reynolds 
number range in which the drag coefficient for a cylinder is constant. In  geo- 
metrically similar situations, an increasing Reynolds number implies a declining 
influence of viscous forces compared with inertia forces in the fluid. Since neither 
the drag coefficient nor the Strouhal number are functions of the Reynolds number 
over this considerable range, it would appear that viscosity cannot contribute 
significantly to the mechanism of vortex street formation. 

It is true that the growth rate of infinitesimal disturbances in a single layer of 
vorticity bounded above and below by potential flow is influenced by the distribu- 
tion of vorticity in the layer (the distribution representing the influence of vortex 
diffusion) provided the wavelength of the disturbance is of the same order of 
magnitude as the thickness of the sheet (Rayleigh 1894). Nevertheless, when the 
wavelength of the disturbance is large compared with the thickness of the sheet, 
the growth rate is independent of the distribution of the vorticity within the layer 
and is the same as the growth rate for a similar disturbance in a vortex sheet. 
Since the ratio of the distance between concentrated vortices in the same row of 
a vortex street to the thickness of the free vortex layers behind a bluff body is at 
least 25 (Fage & Johansen 1927), it  would appear, on the basis of the initialgrowth 
rates of the predominant disturbances, that it  is also reasonable to disregard the 
finite thickness of the free vortex layers and to idealize them as free vortex sheets. 

Let us now examine the role of the bluff body in the formation of avortex street. 
The flow over the body is responsible for the free vortex layers (which will be 
idealized as free vortex sheets); but given two parallel vortex sheets separated 
by some initial distance, is it necessary to have a solid body between them in 
order to form a vortex street 1 On the basis of the calculations to be presented in 
this paper the answer is definitely no. There is also experimental evidence which 
suggests that the body is not very important in the formation of the vortex street 
(excluding its role in the generation of the vortex layers). Fage & Johansen 
(1927,1928) and Roshko (1954b) were able to form Strouhal numbers, which were 
found to be essentially the same for all two-dimensional bluff bodies, using only 
the distance between the vortex layers, the vortex-street frequency, and the 
characteristic velocity Us. Therefore, it  was decided that one should expect two 
initially parallel vortex sheets to interact to form a vortex street. 

Focusing attention on a wavelength of the sheets as they are produced at some 
fixed location and following them as they are convected downstream, one would 
see the development of individual eddies in the vortex street. Provided the 
transition from sheet to street does not take place too abruptly, this development 
can be simulated by the growth in time of periodic disturbances in two infinitely 
long parallel sheets. 

3. Linear analysis 
Rayleigh (1894) initially investigated the transient response to small amplitude 

disturbances of two infinite, parallel vortex sheets for inviscid incompressible 
flow. He showed that such vortex sheets were unstable to perturbations of all 
wavelengths. Here we present the results of such an analysis (in a more general 
form than the authors have found elsewhere) which are needed for the non-linear 
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investigations of the next section. Rayleigh calculated the growth rate of sym- 
metric, sinusoidal, vertical displacements in both vortex sheets. His results can 
be generalized to include perturbations in the strength of vorticity along the 
sheets in addition to vertical displacements of the sheets. The vortex sheets, 
subjected to a small but arbitrary initial disturbance, are sketched in figure 1. 

Any arbitrary displacement of the elements of the sheets can be characterized 
by four independent functions of x. Two of these functions are associated with 
each sheet; they describe the horizontal and vertical displacements ( and 7 

-LT 
FIGURE 1. A general perturbation of two vortex sheets initially parallel. 

respectively of each element of the sheet, originally located at x along the lines 
y = ih. Provided that either the Fourier transform or the Fourier series- 
expansion of the initial disturbance exists, the subsequent linearized history of 
the system following an arbitrary disturbance can be determined from the 
response to a disturbance of a particular wavelength. 

The problem is to find solutions of Laplace’s equation for the velocity potential 
in all three regions (above, between, and below the sheets) which satisfy the 
boundary conditions of continuity of pressure and normal component of velocity 
across each sheet and which imply finite velocity a t  y = & 00 for finite time. The 
boundary conditions are satisfied only to first order in the displacement of the 
sheets . 

For each wave-number, k, there are necessarily four independent solutions for 
the velocity potential, each corresponding to a particular mode of displacement 
of the individual elements of the vortex sheets. These independent modes (called 
normal modes) can be combined with arbitrary amplitude and phase to satisfy 
the initial disturbance functions. The normal modes are composed of displace- 
ments c1 and rl for the upper sheet and t2 and y2 for the lower sheet: 

t1 = A evt sin (kx - wt),  

ql = Bevt sin (kz - wt),  

C2 = C eYt sin (kz  - wt),  

T~ = D eYt sin (kz - wt),  

with the parameters related as shown in table 1. 
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Modes I and I1 correspond to symmetric displacements and I11 and IV to 
antisymmetric displacements of the individual elements of the vortex sheets. 
The form of the displacements for each mode is sketched in figure 2. It should be 

Mode V P  WIk BIA CIA D/B  
I U( 1 - e-zkh)!i - U e - k h  (tanh 4kh)t + 1  - 1  
I1 - U( 1 - e-2kh)!i - u e - k h  - ( t a d  #h)a + 1  - 1  
I11 U( 1 - e-zkh)!i u e - k h  (coth *kh)* - 1  + 1  
IV - U( 1 - e--2kh)!i U e c k h  - (coth +kh$ - 1  + l  

TABLE 1. The parameters of the normal modes of solution. 

-U 

Symmetrical 
growing mode 

Symmetrical 
decaying mode 

Antisymmetrical 
growing mode 

Antisymmetrical 
decaying mode 

FIUURE 2. A sketch of the four independent periodic modes of a disturbance in two parallel 
vortex sheets. The displacements of individual elements of the vortex sheets are shown by 
the arrows. 

noted that modes I and I11 are unstable or growing disturbances, while I1 and IV 
are stable or decaying disturbances of the vortex sheets. A pure growing distur- 
bance of the sheets is not simply a vertical displacement of the elements of the 
vortex sheets, but rather a particular combination of vertical and horizontal 
displacement. The horizontal displacement leads to a periodic pattern of in- 
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creasing and decreasing vortex strength along the sheets. The variation of vortex 
strength in its antisymmetric form (mode 111) gives the first indication of a 
vortex-street arrangement. 

The solutions for the initial growth of disturbances in a single sheet of vorticity 
(often called Helmholtz instability) can be obtained from the results for two 
sheets (table 1 )  by simply letting the separation between the sheets, h, approach 
infinity, giving v = 5 kU, w = 0, and BIA = & 1 .  

R 

L 
__t 

/ / L  .. Act" 

U 

- _  

Compression Expansion Compression 
-c- -u _I_ _I 

7 
velocity 

Compression 

Antisymmetric growing mode 

Two - 

p 4 Phase /t Phase 
2/h r:,l11 Asymptotic v e y  

M solut'on 

Karman 
spacing 

1.76 - k = h  sheets 

FIGURE 3. A summary of the results of the linear analysis of disturbances in vortex sheets. 

The initial growth rate, v, divided by the reference velocity, U ,  is plotted 
against the wave-number, k,  in figure 3 for the case of a growing disturbance in a 
single vortex sheet and an antisymmetric growing disturbance (mode 111) in two 
vortex sheets. The disturbance in the single sheet is a stationary wave, while for 
the two vortex sheets the disturbance is a travelling wave. The phase velocity 
(wllc in table 1 )  of the antisymmetrical disturbance is also sketched in figure 3. 

Since both the symmetrical and antisymmetrical disturbances grow initially a t  
the same rate, no .argument based solely on the linearized theory of disturbances 
of the system can account for the eventual formation of an antisymmetric vortex 
street. In  the Karman idealization of a vortex street, the neutrally stable dimen- 
sions of the alternate rows of point vortices was found to be h/a = 0.2805, with h 
the distance between rows of vortices a distance a apart. The wave-number, k ,  
corresponding to this spacing ratio is 2?r(0*2805)/h or 1-76/h and is labelled the 
Karman spacing in figure 3. For such disturbances there is very little interaction 
in the linearized model between the two vortex sheets. There is a noticeable phase 
velocity to the disturbance but the growth rate is essentially the same as that for 
a single sheet. In  any case figure 3 discloses that there is nothing in particular 
about disturbances a t  the Karman spacing in the linearized model to single them 
out for special consideration. 
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4. Non-linear analysis-single sheet 
Rosenhead (1931) calculated the early stages of the non-linear growth of an 

initial periodic disturbance in a vortex sheet assuming that the vortex sheet could 
be represented by a row of point vortices of finite uniform strength. The initial 
perturbation of the row of point vortices was simply a small-amplitude sinusoidal 
displacement of the vortices perpendicular to the line containing the r0w.t 
Rosenhead’s results (which are sketched in Goldstein 1938, ch. I, 6 8) indicated 
that vortex sheets gradually roll up with the vorticity becoming more and more 
concentrated in spiral shaped patterns. This suggests a transformation of the 
infinite vortex sheet into a row of concentrated vortices. 

Recently Birkhoff & Fisher (1959) have questioned the notion of smooth 
rolling-up of a vortex sheet into a row of concentrated vortices. They repeated 
Rosenhead’s calculation using a smaller time step in the integration and more 
point vortices per wavelength of the initial disturbance and obtained results 
indicating concentration of vorticity but without smooth roll up. The trajectories 
they found for the individual vortices in the region of concentration using Rosen- 
head’s initial perturbation, were quite tortuous; smoother paths for the individual 
point vortices were obtained for normal growing mode initial disturbances (see 
figure 3). 

Birkhoff & Fisher further point out that one cannot expect such a system of 
point vortices to coalesce into concentrated vortices. They demonstrate in fact 
that indefinite approach of any pair of point vortices in the system must be 
accompanied by indefinite recession of other pairs in order for the ‘energy’ to 
remain constant. 

This criticism of Rosenhead’s calculation lead Hama & Burke (1960) to a re- 
examination of his work. They reproduced Rosenhead’s calculations using his 
time increments and number of vortices per wavelength of disturbance. 
Decreasing the time increment per step in the numerical calculations while 
keeping the number of vortices fixed, caused the individual vortex trajectories 
to become tortuous as Birkhoff & Fisher had found (for a system of more 
vortices). Again, smoother vortex trajectories were calculated for normal mode 
initial perturbations. 

From these investigations of the growth of disturbances in a single sheet of 
vorticity one can see a tendency for concentration of vorticity in clouds, but one 
is cautioned not to expect detail or accurate fine structure within the cloud. 

5. Non-linear analysis of antisymmetric disturbances in two vortex 
sheets 

In  keeping with 3 4 let us first assume that two infinite parallel vortex sheets of 
constant but opposite strength can be represented by two infinite parallel rows of 
finite-strength vortices. The vortices in each row are of equal intensity but the 
sense is opposite in the two rows. Let us now examine the growth of antisym- 

Such a perturbation does not correspond to the pure growing normal mode in figure 3, 
but represents a disturbance composed of equal amounts of both growing and decaying 
normal modes of the same amplitude and wavelength. 
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metrical sinusoidal disturbances of wavelength a in two such rows of vortices 
initially parallel to the x-axis and a distance h apart (figure 4). The free-stream 
velocity in the absence of the vortex rows is taken to be U parallel to the x-axis. 
Let the number of vortex elements per wavelength in each row be n. The strength 
of the vortices in the upper row is - 2Ualn and in the lower row 2Ualn (posi- 
tive vorticity counterclockwise). The flow is considered to be inviscid and 
incompressible. 

Following 5 3, an antisymmetric sinusoidal disturbance is defined by 
[,(x) = - t 2 (x )  and yl(x) = y2(x). If the wavelength of the disturbance is a ,  this 
definition is equivalent to c,(x) = c2(x  + +a) and rl(x) = - y2(x + $a). Hence this 
antisymmetric disturbance may also be described as shifted-symmetric (a sym- 
metric disturbance shifted by one half-wavelength in one sheet) ; this equivalence 
holds only for sinusoidal dist,urbances, and the appropriate restriction on the 
configuration of the vortex rows in the non-linear stages of growth is that of 
shifted-symmetry rather than antisymmetry. 

I -u 
FIGURE 4. A sketch showing two wavelengths of a periodic perturbation of two initially 
parallel infinite vortex rows. 0, Vortex element with clockwise rotation; 0, vortex element 
with counterclockwise rotation. 

Let the co-ordinates of the ith vortex element in the upper row of vortices be 
xi(t), yi(t) at time t ,  and let the horizontal and vertical components of the velocity 
of this element induced by all other vortex elements and the free-stream motion 
be ui(t) and vi(t) respectively. Since this analysis is restricted to shifted-sym- 
metric periodic disturbances, the ith vortex element in the lower row corre- 
sponds in position to an element which is one half-wavelength advanced from 
the ith vortex element in the upper row. Then 

xi(t) ++a = xt(t) (i = 1,2,  ..., n), ( 5 )  

(6) yi(t) = - yi(t) (i = 1,2, . . ., n), 

where the superscript 1 signifies the lower row. 
Differentiation of ( 5 )  and (6) with respect to time gives 

u&) = ui(t), (7)  

v&) = -vE(t), ( 8 )  

the relationship between the velocity components of corresponding vortex 
elements in the upper and lower rows. 



in which ui and vi can be considered to be known functions of position in the 
differential equations. It is not necessary to calculate xi and yi explicitly since 
they are uniquely related to xi and y< by ( 5 )  and (6); however, in calculating ui 
and vi the influence of the lower row of vortices on the upper row must be 
considered. 

The velocity components ui and vi can be determined by considering the 
velocity induced at  the location of the ith vortex by all other vortices of the 
system and by the free-stream motion. The periodic arrangement of n vortices 
per wavelength, a, in the upper and lower rows can be thought of as composed of 
n separate sub-arrangements of vortices. Each sub-arrangement for a given row 
is composed of an infinite row of vortices of strength & 2Ua/n located a distance 
a apart and parallel to the x-axis (see figure 4). The components of the velocity 
induced at  (xi, yi) due to such a sub-arrangement of vortices of the upper row with 
coordinates 

are (see Lamb 1932, 5 156) 
(Xi> Yj), (Xj 2 a, Yj), ( X i  5 2% Yj), .'. 

I -  ( 1 2 )  
sin 27r(xi - xi)/a v.. = - - 

cosh 27r(yi - y j ) /a  - cos %-(xi - xi)/. 
Similarly, the velocity components u t  and vij a t  (xi ,yi)  due to such a sub- 

arrangement of vortices of strength 2 Ualn with coordinates 

are 
sinh 277(yi + y j ) / a  

sin 2n(xi - xi)/a 

u!. 1 -- 

v!. = -- 

cosh 27r(yi + ~ ~ ) / a  + cos 2n(xt - ~ $ ) / a  

2n(yi + yj) /a  + cos 27474 - x i ) / ~  

in which the coordinates xi and yi have been expressed in terms of x j  and yi by 
using ( 5 )  and (6). 

The velocity of an individual vortex element located a t  (xi, yi) is composed of 
the horizontal component U due to the free-stream motion and the induced 
velocity due to all other vortex elements; therefore, 

n 

j = 1  
ui = u+ c ( U i j + U i j ) ,  

n 

j = 1  
vi = z; (Vi j  + Vii) .  (16) 

The mean horizontal velocity of translation of the vortex system, D, is simply 
the average value of ui for all of the vortices in a wavelength, or 
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By noting that uii is antisymmetric in i and j (and that therefore its double 
summation on i and j is identically zero) U can be simply expressed as 

which indicates that the mean translational velocity of the upper row is entirely 
due to the vortices in the lower row (and vice versa) even when the row is 
distorted,t i.e. when yi + @ for all i .  The mean vertical velocity, 7, of the 
vortices in the upper row, averaged over a wavelength, is simply, 

Since both vii and vii are antisymmetric in i and j the double summations are 
identically zero, and (19) becomes 

V E O ,  t > , O  (20) 

(for all values of time). Equation (20) immediately implies that the average 
vertical displacement of all the elements in either the upper or lower rows is zero 
for all values of time. 

The differential equations (9) and (10) for the position of the vortices in the 
upper row can now be solved as a function of time. Unfortunately the velocity 
components, (15) and (16), are non-linear functions of position of the vortices, 
necessitating a numerical solution of the differential equations. 

The basic procedure used in the solution was straightforward. For a given 
configuration of the vortices, ui and vi were computed for all vortices 

( i = 1 , 2 , . . . , n ) ;  

these computed velocity components for each vortex were then modified, on the 
basis of the past velocities of each vortex, to give an average value of velocity for 
a time increment At. Based on the calculated average velocity and At, a new 
position was determined for each vortex; ui and vi were then recalculated for the 
new configuration and the process repeated. The number of individual calcula- 
tions involved in integrating ( 1 5 )  and (16) in this manner is so large that the 
calculations were, by necessity, performed on a high-speed electronic digital 
computer. The actual integrating programme employed was the SHARE-program 
G-L-AIDE. The time step, At, in the integrations was varied from 0.002alU to 
0*02a/U, with the majority of the runs calculated with At = 0-004a/U. Halving 
the time step from this value did not noticeably affect the results. Most of the 
calculations were performed with 21 vortices per wavelength in each row. While 
one would have liked to have had more vortices per wavelength in order to 
increase the detail in the results, it was found that roughly 20 vortices per 
wavelength represented a reasonable compromise between detail and the expense 

t In the undisturbed configuration the vortex rows are not exactly at rest in the co- 
ordinate system shown in figure 4, but move in the x-direction with a velocity 

= U( 1 - [coth (nnh/a)](-l)n}. 
For the values of nnh/a to be considered here, the velocity of the undisturbed vortex system 
is very small. 
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of the machine calculations (doubling n increases the calculation time by a factor 
of four). The number 21 rather than 20 for n was decided on the basis of pre- 
liminary runs which will be discussed later. Given the time step in the integration, 
At, and the number of vortices, the parameters to be investigated are simply the 
spacing ratio, h/a, and the form of the initial shifted-symmetrical disturbance of 
the vortices. 

If Axd and Ayi are the horizontal and vertical displacements of the ith vortex 
in the upper row due to the initial perturbation, then z,(O), y,(O), the co-ordinates 
of the ith vortex after the perturbation, are 

x,(O) = (i- l)a/n+Axd (i= 1,2,  ..., n);  (21) 

yi(0) = +h + Ay, (i = 1,2 ,  . .., n). (22) 
The undisturbed co-ordinates of the ith vortex in the upper row are (i - 1) a/n, ah; 
time, t, has been taken to be zero at the initial perturbation. Equations (21) and 
(22) can be expressed in terms of (1) and (2) as 

( i - l )a  2n(i-1) . 
X,(O) = ~ +Asin- ( z=  1,2,  ..., n); 

n n 

2n(i - 1) 
~ ~ ( 0 )  = +h+Bsin- 

n 
( i =  1,2 ,..., n). 

(23) 

(24) 

From 8 3 it is known that there are two normal modes of small-amplitude distur- 
bances (modes I11 and IV of table 1) which are specified by the ratio of B to A. 
For values of B / A  other than those of table 1, the perturbation is simply a linear 
combination of the two pure modes. If (24) is rewritten as 

2n(i - 1) 
y,(O) = $h + y A  sin ___ 

n 
(i = 1,2,  . . . , n), 

then one can think of A as the size of the perturbation and y as the ratio of B / A  
in (23) and (24). The value of y determines the combination of pure modes in the 
initial disturbance. If A,,, and A,, are sizes of the growing and decaying modes 
respectively, then the ratios of A,,, and A,, to A ( A  is the size of the total 
disturbance) are expressed in terms of y as 

A,,, (cothnh/a)* + y A,, ~- (cothnh/a)*- y 
A - 2(cothnh/a)* ’ A - 2(cothnh/a)* * 

- -  

While Birkhoff & Fisher (1959) and Hama & Burke (1960) found, for a single 
row of vortices, that a pure growing-mode perturbation was necessary in order 
to have smooth paths for subsequent motions of the vortices, no such restriction 
was found to be necessary in the problem being considered. Therefore all but one 
of the calculations presented here have an initial disturbance composed of both 
growing and decaying modes, the amount of each present in the perturbation 
depending on y . t  

-f An initial perturbation which is not purely a growing or decaying mode actually 
represents a large class of known initial conditions provided the amplitude is small enough 
for the linearized theory of $ 3  to be valid. Consider a given perturbation of the form of (23) 
and (25) with y and A fixed. In  a small amount of time, +7, the original perturbation 
would change t o  new configurations determined by (1) and (2). These new oor@urations 
could just as well be considered the initial disturbance as the original perturbation. 
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The results of the calculations of the positions of the vortices at various times 
after the initial disturbance, for particular values of h/a, have been plotted in 
figures 5 to 14. The individual drawings in these figures show the stages in the 
development of vortex streets. The solid lines in the sketches, which connect the 
individual vortices consecutively on the basis of their relative positions in the 
undisturbed vortex rows, were drawn in to suggest a continuous vortex sheet. 

- -  
- t u .  0 I a ;  u 
a ’ z  h 0.000; 0*0009 

0.384; 0.1206 

0584; 0.3659 

U 

0.184; 0.0230 

0.384; 0.0710 

I 

FIGURE 5 

1.184; 0.6507 

FIGURE 6 

FIGURE 5 .  Vortex street formation with h/a = 0.120, A = -0.0125a, y = (tanhnh/a)$, 
n = 21, and At = 0*004a/U. 

FIGURE 6. Vortex street formation with h/a = 0.140, A = -0.0125a, y = (tanh 7rh/a)*, 
n = 21, and At = 0.004a/U. 

A line was not drawn connecting the vortices within the regions of vortex con- 
centration, since such a suggestion of fine structure of continuous vorticity within 
the clouds seemed unjustified, owing to the discrete distribution of vorticity used 
in the calculations. On the basis of the location of the last vortex to be swept into 
the cloud, a dotted line was generally drawn in connecting the clouds to the solid 
curves. In  the last stages of the development of the vortex streets, the concentra- 
tion of vortices into individual clouds had progressed to such an extent that there 
was no longer sufficient evidence to suggest the existence of vortex sheets. 
Instead a solid line was simply drawn surrounding the individual clouds with 
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arrowheads indicating the sense of rotation of the net vorticity within the 
individual clouds. 

The spacing ratio (hla), A and y of the original perturbation, the number of 
vortices per wavelength in each row (n), and the time increment (At) in the 
integration for each vortex system are given in the captions of the figures. The 
elapsed time in the integration from the original perturbation to each later 

h 01 

FIGURE 7 

0.584; 0.2876 

0784; 0.4650 

0-5867 

0.7779 

FIGURE 8 

FIGURE 7. Later stages of the development of the vortex street system of figure 6. 

FIGURE 8. Vortex street formation with h,/a = 0.170, A = -0.0125a, y = (tanhnh/a)*, 
n. = 21, and At = @004a/U. 

configuration sketched is shown immediately to the right of each drawing along 
with the value of e / U  for that configuration. The open and solid circles in the 
drawings represent vortices with clockwise and counterclockwise senses of 
rotation respectively. The wavelength, a, in all sketches is the same; h varies to 
give the appropriate value of hla. Parallel lines denoting the original separation 
between undisturbed rows of vortices are shown in all sketches. The calculated 
values of a / U  are plotted in figures 15 and 16 as a function of time for all of the 
vortex systems investigated. Figures 5 to 13 are numbered in order of increasing 
value of h/a. 
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6. Discussion of results 
There appears to be a fairly general pattern followed in the formation of vortex 

streets from vortex rows, which is independent of hla. In  the early stages (see, 
for example, the second sketch of figure 6 or the first sketch of figure lo), the 
shifted-symmetrical disturbance grows in a manner similar to that predicted by 
the linearized theory of 0 3. Rolling up or concentration of the vortices can be 

D - 
u T  

h 0.1627 A 

0.3659 0384; 

B 
U 

0-03 18 

- 

0.1304 

0.784; 0.5292 0.784; 0.4459 

0.984; 0.6528 0.984; 0.5339 

1.184; 07365 1.184; 0.6945 

FIGURE 9 FIGURE 10 

FIGURE 9. Vortex street formation with h/a = 0.210, A = -Oo.025Oa, y = (ta,nhnh/a)t, 
n = 21, and At = O.O04a/U. 

FIGURE 10. Vortex street formation with h/a = 0.240, A = -0*0250a, y = (tanhnh/a)t, 
n = 21, and At = 0.004a/U. 

seen near x = 0, a, 2a in the upper row and near x = iu, #a in the lower row. This 
early stage is characterized by negligible interaction between the vortex rows. 

The intermediate stage of the development, on the other hand, is dominated 
by the interaction of the two vortex rows. As the concentration of vortices and 
the growth of the transverse displacement of the vortices in the early stage 
proceeds, the vortices displaced from one row toward the other row tend to be 
swept into the outer mantle of the cloud of vortices forming in the other row. 
The last four sketches of figure 10 are typical illustrations of the intermediate 
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stage of vortex street development. The mutual interaction in this stage of the 
development between the portions of each vortex row which are swept toward the 
opposite row is a function of h/a, decreasing with increasing values of hla. The 
final stage of vortex street formation is the concentration of all individual 
vortices into clouds of vorticity or eddies. It is presumed that if viscosity were 
present its major effect on the vortex street formation would be to effect cancel- 
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0384; 0.0968 
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FIGURE 11 
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0.784; 0.3734 

1.184; 0.5531 

FIGURE 12 

FIGURE 11. Vortex street formation with h/a = 0.281, A = -0-0250a, y = (tanhh/a)*,  
n = 21, and At = 0*004a/U. 

FIGURE 12. Vortex street formation with h/a = 0.281, A = -0*0250a, y = (cothnhja)), 
n = 21, and At = 0.004a/U. 

lation of vorticity of opposite sign by diffusion within the clouds formed in this 
final stage. 

The value of h/a of the system does not alter the general pattern of vortex 
street formation but rather influences the details of the interactions. In  general, 
increasing the value of h/a (I) decreases the number of individual clouds of 
vorticity formed per wavelength, (2) increases the net vorticity in the outer 
vortex clouds, and (3) increases the time required to reach the final stage of 
development. The details of the dependence of the interaction on h/a can be seen 
by comparing figures 5 through 13. 
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I n  the intermediate stage of development there exists what might be called a 
competition between two separate mechanisms of interaction of the original 
vortex rows. At the larger values of hja, portions of each vortex row are swept 
across to the vortex clouds forming on the opposite side (see figure 13). At the 
smaller values of hla these portions of the vortex rows start out for the other side 

t U *  tf 
li ' u  
- -  

T 
h 0.384; 0.0634 I 

0.584; 0.1490 

tU , B 
a ' U  
- -  

1.920 ; 04933 

1.184; 0.6656 

0.784; 0.2403 

0.984; 

1.184; 

0.3145 

0.3726 

1.184; 0.6656 

1-184; 0.5470 

FIGURE 13 FIGURE 14 

FIGURE 13. Vortex street formation with h/a = 0.340, A = -0.0250a, y = (tanhnh/a)*, 
n = 21, and At = 0*004a/U. 

FIGURE 14. From the top down. First sketch: vortex street formed with hla = 0.281, 
small initial perturbation with short-wavelengthcomponents, n = 20, At = O-O2a/U. Second 
sketch:vortexstreetformedwithh/a = 0.281, A = -0*0250a, y = (tanhnh/a)*,n = 20, and 
At = 0*004a/U. Third sketch: tha same system as the second sketch with boundaries of 
vortex clouds drawn rather than continuous vortex sheets. Fourth sketch: vortex street 
formed with h/a = 0.281, A = - 0.0250a, y = (tanhnh/a)i, n = 21, and At = O.O04a/U. 

but before they reach it they concentrate to form separate vortex clouds ae 
shown in figure 5. For values of hla between these two extremes, parts of both 
mechanisms of interaction exist; some vortices are swept across to the outer 
clouds and others form smaller clouds between them. Increasing h/a decreases 
the strength of these inner clouds. The numbers of individual vortex clouds 
formed and their net strength as a function of h/a are summarized in table 2. The 
net strength of a cloud is simply the number of vortices in the cloud, after allowing 
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for cancellation of equal numbers of positive and negative elements. All of the 
systems of figures 5 to 13, on which table 2 is based, have n = 21. 

Note that h/a = 0.28 is the smallest sheet spacing investigated for which only 
two clouds form per wavelength, while h/a = 0.14 is the smallest sheet spacing 
for which only four clouds form per wavelength. Furthermore, h/a = 0.14 or 0.17 
are the spacings for which all four clouds are of approximately equal strength. 
This suggests that the Karman spacing ratio of 0.28 has a special importance 
quite independent of the stability analysis from which it was derived and which 
has been subjected to steady criticism. That is, the number of equal strength 
vortex clouds per half wavelength times the original spacing ratio is (approxi- 
mately) the ratio 0.28. One is tempted to expect this pattern to persist even for 
smaller h/a than studied here and for a wider variety of initial conditions. 

hja 
0.12 
0.14 
0.17 
0.21 
0.24 
0.28 
0.34 

No. of 
vortex clouds 

formed per 
wavelength 

6 
4 
4 
4 
4 
2 
2 

Net strength of clouds 

Outer 

7 
4 
5 
9 

10 
13 
15 

3 

Inner 

3 ;  5 
5 
4 
4 
3 

TABLE 2.  Summary of vortex cloud formations. 

Figures 11 and 12 show the development of vortex streets for similar systems 
with different initial conditions. The system shown in figure 12 was perturbed 
with a growing mode alone while mixed growing and decaying modes were used 
in the system of figure 11. The differences between the two systems at  like values 
of t U / a  are exceedingly small and suggest relative insensitivity to the form of the 
initial perturbation. 

Figure 14 presents a comparison between a number of systems. The first sketch 
shows a vortex system for which n = 20 and At = 0.020, five times the increment 
used in all other calculations. The amplitude of the initial perturbation was small 
and contained short-wavelength components. The final stage in the development 
was rapidly reached, the interaction was haphazard, but the final stage is similar 
to the one shown in the third sketch for which the initial perturbation was 
smoother and At much smaller. The second and third sketches are of the same 
vortex system; the difference lies in what might be called the authors’ artistic 
interpretation of the results. The lines in the second sketch suggest continuous 
vortex sheets while the same system (the location of the individual vortices in the 
two sketches is exactly the same) is viewed in the third sketch as though the 
vortices were already concentrated in clouds. The last sketch in figure 14 and the 
second compare systems with different values of n;  the two are quite similar. 
When the calculations for the second sketch were carried further in time, the last 
vortex of the tails being swept into the clouds never managed to enter the clouds 
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18 Frederick H .  Abernathy and Richard E .  Kronauer 

but began to wander to the left between the outer clouds. When n was increased 
to 21 (last sketch of the figure) this did not happen. It was because of this that 
n = 21 was initially selected for all of the other calculations. The differences 
among the various vortex systems can also be seen from the plots of o / U  in 
figures 15 and 16. 
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h/a =0.140 (Figs. 6 and 7) 
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FIGURE 15. A plot of the calculated average velocity of various vortex systems as a function 
of time. The details of each system are given in the captions of the indicated figures. 

FIGURE 16. A comparison of calculated average velocity of vortex systems with h/a = 0.281 
and At = 0-004a/U, but with different initial conditions or number of vortices per wave- 
length. Curve 1: A = -0*0250a, y = (tanhnh/u)#, n = 20. Curve 2: A = -0.0250a, 
y = (tanh nh/o)t, n = 21. Curve 3: A = -0.0250a, y = (cothnh/a)&, n = 21. 

There are two important observed features of vortex street formation which are 
explained by the results of Q 5, namely: (1) broadening of the vortex street with 
the distance downstream in the wake, and (2) cancellation of part of the vorticity 
discharged from the body in the formation of the vortex street. These features, 
which were thought to be separate, are actually intimately connected; the 
broadening following of necessity from the vortex cancellation. The broadening 
of the vortex street with distance downstream in the wake is clearly shown in the 



The formation of vortex streets 19 

photographs of actual street formation taken by Homann (see Goldstein 1936, 
ch. 13, Q 240) and in all of the calculated results of Q 5. Consider for example the 
sketches of figure 11 for which h/a = 0-28, the value of the observed spacing ratio 
near a bluff body. If one interchanges time with downstream position in the wake, 
then the composite picture of street formation obtained in this way agrees 
remarkably well with Homann’s photographs. As portions of vorticity from one 
side are swept across to the other side the remaining vorticity must move away 
from the opposite side because from equation (20) the average transverse displace- 
ment of the vortex row must be zero. The explanation of vortex street broadening 
is as simple as that. The vorticity which is swept from one side to the other, 
decreases the net strength of the vortex cloud formed primarily of vorticity of the 
opposite sense. 

Once the interaction between the vortex rows has progressed to the stage of 
forming distinct clouds of vorticity, the vortex street has essentially been formed. 
Further broadening of the street in an inviscid fluid is impossible. In  a corollary 
to their momentum invariance theorem, Birkhoff & Zarantonello (1957, ch. 13, 
§ 6) show that the broadening of an infinite street of equal strength and alternate 
sense eddies is possible only in viscous plane flow. 

In the last sketch of figure 11, the four vortices comprising the tails of vorticity 
of opposite sign being swept into the clouds reduce the net strength of the clouds 
to that of 13 individual vortices. Without interaction between the rows the 
strength of the clouds would have been 31 (the value of n) ;  hence the interaction 
of the vortex rows reduces the strength of the clouds to ++ or roughly 60 yo of the 
total strength of the original vortex rows per wavelength. This is exactly the value 
of the strength of eddies reported by Fage & Johansen (1 927) and discussed in 
8 1 of this paper. 

Within these large eddies the vortex elements of opposite sense are not 
randomly distributed but rather form an outer mantle. Therefore the initial 
action of viscosity would be to cause cancellation in this outer mantle alone, 
leaving the core well defined. This undoubtedly explains the persistence of 
recognizable eddies far downstream from the body, even when the eddies are 
turbulent. 

The actual spacing ratio of the vortex street far downstream in the wake of a 
cylinder (i.e. sufficiently far downstream for the concentration of vorticity to be 
essentially completed) can be estimated to be 0.5 from Homann’s photograph 
for a Reynolds number of 101. The spacing ratio of the calculated vortex street in 
figure 11 is also roughly 0.5. It is difficult to measure the spacing ratio either from 
actual photographs of vortex streets or from the computed streets because of the 
uncertainty in locating the centre of the large diffuse eddies which make up the 
street. In  the process of forming these large eddies, all the fluid originally between 
the parallel vortex sheets remains trapped between them and so is swept into the 
eddies. Some fluid outside the sheets is also swept in, and therefore the area of the 
fully developed eddies will be larger than that of the wake from which they are 
formed. 

2-2 
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7. Conclusions 
The essential features of the formation of vortex streets from the vortex layers 

emanating from bluff bodies can be explained simply by the growth of distur- 
bances in two infinite, initially parallel, vortex rows in an inviscid incompressible 
fluid. A linearized analysis of the growth of disturbances does indicate regions of 
concentration of vorticity along the vortex sheets, but does not indicate strong 
interaction between the vortex sheets for the spacing ratios of disturbances of 
interest. The important features of vortex street formation can only be elucidated 
by considering the growth of large amplitude disturbances. The observed 
broadening of vortex streets downstream in the wakes of bluff bodies is a direct 
consequence of the interaction of the vortex rows. This interaction leads to the 
formation of concentrated clouds of vorticity with a net strength diminished by 
the vorticity swept into the cloud from the opposite vortex row. 

The machine programming and calculations for the work presented in this 
paper were supported by the Office of Naval Research under contracts NONE 
1866-20 and NONR 1866-34. A grant from the Joseph Clark Bequest of Harvard 
University made possible the preparation of the figures. 

We are indebted to Steven R. Russell of the Littauer Statistical Laboratory for 
assistance in the programming of the calculations. 
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